Supervised Machine‐Learning Reveals That Old and Obese People Achieve Low Dapsone Concentrations

نویسندگان

  • RG Hall
  • JG Pasipanodya
  • MA Swancutt
  • C Meek
  • R Leff
  • T Gumbo
چکیده

The human species is becoming increasingly obese. Dapsone, which is extensively used across the globe for dermatological disorders, arachnid bites, and for treatment of several bacterial, fungal, and parasitic diseases, could be affected by obesity. We performed a clinical experiment, using optimal design, in volunteers weighing 44-150 kg, to identify the effect of obesity on dapsone pharmacokinetic parameters based on maximum-likelihood solution via the expectation-maximization algorithm. Artificial intelligence-based multivariate adaptive regression splines were used for covariate selection, and identified weight and/or age as predictors of absorption, systemic clearance, and volume of distribution. These relationships occurred only between certain patient weight and age ranges, delimited by multiple hinges and regions of discontinuity, not identified by standard pharmacometric approaches. Older and obese people have lower drug concentrations after standard dosing, but with complex patterns. Given that efficacy is concentration-dependent, optimal dapsone doses need to be personalized for obese patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

دسته‌بندی داده‌های دورده‌ای با ابرمستطیل موازی محورهای مختصات

One of the machine learning tasks is supervised learning. In supervised learning we infer a function from labeled training data. The goal of supervised learning algorithms is learning a good hypothesis that minimizes the sum of the errors. A wide range of supervised algorithms is available such as decision tress, SVM, and KNN methods. In this paper we focus on decision tree algorithms. When we ...

متن کامل

Machine learning based Visual Evoked Potential (VEP) Signals Recognition

Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Learning Low Density Separators

We define a novel, basic, unsupervised learning problem learning the lowest density homogeneous hyperplane separator of an unknown probability distribution. This task is relevant to several problems in machine learning, such as semi-supervised learning and clustering stability. We investigate the question of existence of a universally consistent algorithm for this problem. We propose two natura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017